US Workforce and Educational Challenges in the Global Economy

Galan M. Janeksela

Department of Social Sciences and Public Administration, West Virginia University, Institute of Technology
415 Fayette Pike, Montgomery, West Virginia 25136 United States of America
Galan.Janeksela@mail.wvu.edu

Abstract

The purpose of this paper is to analyze workforce and education challenges which affect the US’s ability to compete in the global economy. A well-educated workforce must be a priority for the US to be successful in an increasingly competitive international economy; however, a significant number of US schools are failing to provide students with the necessary skills to enter the workforce. Over the past 20 years, there has not been a significant improvement in the overall performance of US students on standardized tests. In addition, US students’ performance on the Program for International Student Assessment (PISA) demonstrates that US students are lagging behind students from other economically developed countries. Research has also found that a majority of employers do not believe that the public school system has adequately prepared students to enter the workforce. This situation is compounded by the fact that there has been a major talent shift from low-skill jobs to more complex knowledge and technology jobs. This phenomenon places US students in an even more disadvantageous position. Low income students face additional challenges which lead to negative outcomes. Low income students are more likely to: attend low quality schools, have lower academic performance, have lower high school graduation rates, have lower educational expectations during their K-12 years, need remedial courses in college, dropout of high school, and dropout of college. This paper concludes with recommendations for addressing the workforce and educational challenges facing the US.

Keywords

Global Economy; Workforce Development; Education; Low-income Students; STEM

Introduction

The purpose of this paper is to analyze challenges related to the ability of United States (US) to compete in the global economy. A significant number of US schools are failing to provide students with the basic skills needed for college and for a career. The majority of US high school graduates who took the ACT in 2013 were not prepared for college or for a career. Only 26 percent of high school graduates met the standards for college and career readiness in all four areas of ACT testing: English, reading, math, and science. In a study of 48 countries, the US ranked 25th in the rate of improvement in educational outcomes.

In the global economy, there has been a major talent shift from low-skill jobs to more complex knowledge and technology jobs. This shift places US students in an even more disadvantageous position with regards to competing for jobs. Low income students face additional challenges which negatively impact their ability to compete for jobs in the global economy.

This paper highlights the fact that jobs are available in the US, but not all available workers are qualified for these jobs. While the US unemployment rate was at 7.9 percent in 2012, thousands of manufacturing jobs were unfilled because companies were unable to find sufficiently skilled workers (skills gap). In 2014, there were 4 million jobs unfilled due to the skills gap. In addition to discussing the workforce and educational challenges facing the US, this paper includes recommendations for action to address these challenges.

The Context

In order to understand the present status and the needs of the US workforce, the following sections review the impact of the global economy on job opportunities in the US.

The Loss of Manufacturing Jobs

Between 2000 and 2008, the US lost four million manufacturing jobs. In November of 2000, there were 17,202,000 manufacturing jobs in the US. In November of 2008, there were 13,168,000 manufacturing jobs in the US (Alliance of American Manufacturing, 2013). Between 2001 and 2011, the US
lost 2.7 million jobs (eliminated or displaced) to China due to the US trade deficit. More than 2.1 million of these jobs (76.9 percent) were in manufacturing. “These lost manufacturing jobs account for more than half of all US manufacturing jobs lost or displaced between 2001 and 2011” (Scott, 2012, section 1). During the same period, Germany lost approximately 700,000 manufacturing jobs (an 8.3 percent decrease), Japan lost 2.1 million (a 17.4 percent decrease), and the United States lost 5.7 million (a 30.2 percent decrease). The loss of manufacturing jobs in the US was nearly twice the job loss as Japan, and nearly four times the job loss of Germany (Scott, 2012).

Hiring Trends

In the 1990’s, US corporations added 4.4 million jobs in the US and 2.7 million jobs in other countries. During the 2000s, US multi-national corporations cut their work forces in the US by 2.9 million while increasing employment overseas by 2.4 million. In 2009, US multi-nationals corporations employed 21.1 million people at home and 10.3 million elsewhere (Wessel, 2011).

Labor Costs

The difference in labor costs allows some countries to produce goods and provide services at a cost with which the US cannot compete. In 2011, twenty countries had lower hourly compensation costs for manufacturing workers (expressed in US dollars): United Kingdom, Spain, New Zealand, Singapore, Greece, Israel, Republic of Korea, Argentina, Czech Republic, Portugal, Slovakia, Brazil, Estonia, Taiwan, Hungary, Poland, Mexico, Philippines, India and China (Bureau of Labor Statistics, 2012).

China appears to have a number of advantages with regards to the government’s role in the Chinese economy, as follows:

“China has a huge, low-cost, underutilized, and eager workforce unencumbered by outdated unions, labor laws, and expensive government mandates and regulations. China has a strong supply network that is getting better all the time. China understands the value of infrastructure and is investing heavily in it. National and provincial governments want to help business succeed, not tie its hands” (Sirkin, 2009, p. 1).

Mexico is becoming more competitive with China and with other nations. In 1996, the cost of Chinese labor cost was about one-third of Mexican labor (Sirkin, 2009). In 2003, average hourly wages in Mexico were 188 percent more than in China (Reuters, 2013, p. 1). In 2007, Chinese labor costs were about half of Mexico’s—$1.69 per hour, on average, compared to $3.46 per hour in China (Sirkin, 2009, section 2). In 2013, average hourly wages were 19.6 percent lower in Mexico than in China (Reuters, 2013, p. 1).

Location of Skilled Labor

In addition to outsourcing low-wage jobs, US corporations have outsourced “...millions of high-skill, high-wage jobs which they have placed in countries with wages either equivalent or higher than the United States, including: Germany, Japan, Singapore, Korea and Canada” (Gordon, 2009).

The Location of Customers

Some corporations locate all or part of their operations in countries which use their products or services because the cost of producing and delivering products or delivering services in a particular country is less than the costs associated with producing and delivering products or delivering services from the US to its customers in that country. In a speech in 2011, General Electric’s (GE) CEO Jeffrey Immelt stated that: “We’ve globalized around markets, not cheap labor. Today we go to Brazil, we go to China, and we go to India, because that’s where the customers are” (Wessel, 2011, p. 1).

In 2000, 30 percent of GE’s business sales were overseas; in 2011, 60 percent of GE’s sales were overseas. In 2000, 46 percent of GE employees were overseas; and in 2011, 54 percent were overseas (Wessel, 2011, p. 1).

Education

In the following paragraphs, information about the status of the US educational system is presented.

US Adult Basic Prose Literacy Skills

The National Center for Educational Statistics (2012) compared the findings from two methods which were used to make a national direct estimate of the percentage of adults lacking Basic Prose Literacy Skills, and the results were approximately the same, as follows: 1) the National Assessment of Adult Literacy (NAAL) found that, in 2003, 14.5 percent adults were lacking basic prose literacy skills; and 2) in 1992, the National Adult Literacy Survey (NALS) found that 14.7 percent of adults lack the basic prose literacy skills.
ACT Performance and College/Career Readiness

Fifty-four percent of all of US high school graduates took the ACT in 2013. ACT results indicate that the majority of high school graduates who took the ACT were not prepared for college or for a career. In 2013, 31% of all graduates did not meet any of the four ACT College Readiness Benchmarks: English, Reading, Mathematics, or Science. Only twenty-six percent of all 2013 ACT-tested high school graduates met all four ACT College Readiness Benchmarks (ACT, 2013).

US Educational Outcomes across Time

In a study of 48 countries over a 14 year period (using several data sources), Hanushek, Peterson, and Woessmann (2012) found that the US rate of improvement in educational outcomes lagged behind 24 of the 48 countries in the study. US student performance on the Program for International Student Assessment (PISA) demonstrates that US students continue to lag behind students from other economically developed countries and major economies within specific countries.

College Graduation Rates

The U.S. once led the world in college graduates; however, several nations have surpassed the US in the percent of college graduates in the 25 to 34 age group, as follows: Australia, Belgium, Canada, Denmark, France, Ireland, Israel, Japan, South Korea, Luxembourg, New Zealand, Norway, Sweden and the United Kingdom (Zakaria, 2011).

In 2011, the US ranked 15th out of 27 nations with regards to the Organization for Economic Cooperation and Development (OECD) indicator: “Percentage of today’s young people expected to complete university education (tertiary-type A) in their lifetime” (OECD, 2013, p. 2).

Learning Outcomes of College Graduates

Arum and Roksa (2011) found deficiencies in student learning outcomes. For a large proportion of college students, “…the gains in critical thinking, complex reasoning, and written communication are either exceedingly small or empirically nonexistent. At least 45 percent of students in our sample did not demonstrate any statistically significant improvement in Collegiate Learning Assessment [CLA] performance during the first two years of college” (Arum & Roksa, 2011, section 1).

Thirty-six percent showed no progress in four years in critical thinking, complex reasoning, and writing skills (Arum & Roksa, 2011). An adult literacy survey found that only 41 percent of graduate students tested in 2003 had the ability to read and process information from short texts. The rate for college graduates was even lower (Romano, 2005).

Employer Views of College Graduates

Employers report that a significant number of college graduates are unprepared to be successful in the work environment. A survey of 400 employers found that less than a quarter of new employees with four-year college degrees have “excellent” basic knowledge and applied skills (Casner-Lotto & Barrington, 2006). Seventy-three percent of the employer respondents believe that creativity/innovation will increase in importance for future workforce entrants. However, few of the employers perceived that two-year (4.1 percent) and four-year (21.5 percent) college-educated entrants were “excellent” in this area.

Holmes (2012) conducted an online survey of 500 elite business decision-makers in the United States. The research found that business leaders are not impressed with the readiness for work of today’s college graduate: 60 percent of the respondents believe that less than half of all graduates have the skills they need to succeed; and 43 percent of the respondents believe that less than a 1/4 of all graduates have the skills they need to advance.

Unprepared Potential Workers

Most businesses are now experiencing a rising tide of applicants who do not meet minimum job qualifications. In 2010, Chicago had a 10 percent unemployment rate, while there were more than 10,000 unfilled jobs in the Chicago area because companies were unable to find sufficiently skilled workers (Jacobs, 2012).

When the US unemployment rate was at 7.9 percent in 2012, thousands of manufacturing jobs were unfilled because companies were unable to find sufficiently skilled workers. Jay Timmons, president of the National Association of Manufacturers, stated that five percent of manufacturing jobs go unfilled every day because workers with the requisite skills are not available (cited in Hall, 2012, p. 1).

The US Chamber of Commerce Foundation (2012 section 1) stated that “eighty to ninety million adults today, about half of the workforce, do not have the skills required to acquire or advance in jobs that pay a
family-sustaining wage. There are more than 3.4 million jobs in the United States that remain unfilled due to an unskilled workforce.” In 2014, there were 4 million jobs unfilled due to the skills gap (Dimon & Seltzer, 2014).

Projected Workforce Needs

ACT Workforce President Martin Scaglione summarized the need for improvement in the career readiness of high school graduates, as follows: “Employers have said it is becoming increasingly difficult to match their job openings with workers who have proven skills. We must connect academic skill development in K-12 education to the skills these students will need to get a good job” (ACT, 2012, p. 3-4).

Between 2010 and 2020, it is estimated that the US will be unable to fill 12 to 24 million essential jobs due to the lack of candidates who meet the required qualifications (Gordon 2009). The US Chamber of Commerce Foundation (2012) estimated that “approximately 90% of the jobs in the fastest-growing occupations require some level of postsecondary education and training.”

A study based on Bureau of Labor data found that by 2018, more than two-thirds of the 47 million projected job openings will require some level of postsecondary education or training; one-third of these jobs will require a bachelor’s degree. The vast majority of these 47 million jobs will require education beyond high school; e.g., vocational certificates, community college certificate, AAS, AS (or other Associates degrees with a different title, etc.), apprenticeships (Symonds, Schwartz, & Ferguson, 2011).

The US Department of Labor reported that 62 percent of all US jobs now require two-year or four-year degrees and higher, or special postsecondary occupation certificates or apprenticeships (Gordon, 2009). Gordon (2009, p. 29) concludes that, in the near future “75 percent of all US jobs will demand higher entry-level qualifications, i.e., a good liberal arts education plus postsecondary career-specific technical skills.” Over the next 25 years, “nearly half of the projected job growth will be concentrated in occupations associated with higher education and skill levels. This means that tens of millions more of our students and adults will be less able to qualify for higher-paying jobs. Instead, they will be competing not only with each other and millions of newly arrived immigrants but also with equally (or better) skilled workers in lower-wage economies around the world” (Kirsch, Braun & Kentaro, 2007, p. 4).

Science, Technology, Engineering, and Math (STEM)

Scientists and engineers constitute only 4 percent of the US workforce; however scientists and engineers create a disproportionate number of jobs for the other 96 percent of the workforce. Fifty to 85 percent of the growth in GDP over the past several decades, and 2/3 of the growth in US worker productivity is attributable to science and engineering (Augustine, 2012).

The Commission on Mathematics and Science Education stated the following:

“Knowledge and skills from science, technology, engineering and mathematics—the so-called STEM fields—are crucial to virtually every endeavor of individual and community life. All young Americans should be educated to be ‘STEM-capable’, no matter where they live, what educational path they pursue, or in which field they choose to work” (Carnegie Corporation of New York–Institute for Advanced Study Commission on Mathematics and Science Education, 2009, p. 4).

One example of the importance of STEM is demonstrated by Nevada officials who believe that all of Nevada’s targeted industries for economic development require workers with STEM skills. The targeted industries are, as follows: Tourism, Gaming, and Entertainment, Health and Medical Services, Business IT Ecosystems, Clean Energy, Mining, Materials, and Manufacturing, Logistics and Operations, and Aerospace and Defense (Change the Equation, 2012, p. 9).

The Status and Future of STEM Education

The fast pace of “technology development, dramatic shifts in consumer and military market demands for products and services, and competitive challenges in a global market have all magnified the need for a sophisticated, technically talented, and business savvy workforce” (Stephens & Scott, 2003). The current workforce and the foreseeable workforce do not meet these criteria.

Gordon (2009) argues that a significant technology paradox exists: “While overall younger workers are “tech junkies,” they lack the talent qualifications or even interest in careers centered on designing, making, repairing or applying and managing many 21st
The 2012 Program for International Student Assessment (PISA) found that 15-year-olds in the United States ranked 20th in science, and 27th in mathematics (best estimate within a range of 23-29) of the 34 developed democracies that are members of the Organization for Economic Cooperation and Development (OECD, 2012).

The United States ranked 17th in the world in the number of science degrees awarded (Olson 2011). The World Economic Forum ranked the US 48th in the quality of math and science education (Gordon, 2009, p. 29). The National Math + Science Initiative (2013, p. 1) reported that “the US ranks 16th of 17 nations in the proportion of 24-year-olds who earn degrees in natural science or engineering as opposed to other majors.”

The number of US students going into engineering programs is decreasing. A major reason for this decline is that engineering requires strong math skills, and many students do not have the preparation in math coming out of high school. The President’s Council of Advisors on Science and Technology (2012, p. 15) labeled mathematics as the “bottleneck that is currently keeping many students from pursuing STEM majors” and called for teaching of college-level mathematics courses "by faculty from mathematics-intensive disciplines other than mathematics."

The National Math + Science Initiative (n.d., p. 2) illustrated a similar situation in the area of science education, as follows:

“Only 29 percent of American fourth grade students, 32 percent of eighth grade students, and 18 percent of 12th grade students performed at or above the proficient level in science. About a third of high school mathematics students and two-thirds of those enrolled in physical science have teachers who either did not major in the subject in college or are not certified to teach physical science” (National Math + Science Initiative, n.d., p. 2).

Another indicator of the US’s competitive position is the publication of scientific articles in the top journals. In 1981, US scientists fielded nearly 40 percent of research papers in the most influential journals. By 2009, that figure had shrunk to 29 percent. “During the same period, European nations increased their share of research papers from 33 percent to 36 percent, while research contributed by nations in the Asia-Pacific region increased from 13 percent to 31 percent. China is now the second-largest producer of scientific papers, after the US with nearly 11 percent of the world’s total” (National Math + Science Initiative, n.d., p. 2).

In the areas of innovation and competitiveness; the US ranked sixth among 40 countries and regions based on 16 indicators; e.g., venture capital investment, scientific research, spending on research, and educational achievement (National Math + Science Initiative, n.d., p. 2).

Disadvantaged Students and the Education Gap

Shifting demographics and the changing needs of employers will increase pressure on postsecondary institutions to expand access and educate a more diverse range of students. Many of these students will come from disadvantaged families. When compared to middle class and upper class youth, low income students are more likely to: attend low quality schools, have lower academic performance, have lower high school graduation rates, have lower educational expectations during their K-12 years, need remedial courses in college (which do not count toward the number of hours required for graduation), dropout of high school, and dropout of college. In addition, they are less likely to: take high school courses which prepare them for college-level courses; and take key courses needed for college admittance.

A Framework for the Future

In the remaining paragraphs, recommendations for addressing the workforce and education challenges facing the US are presented.

Recommendations for the Socialization of Students

- Emphasize the importance of performing at a high level in courses which relate to one’s selected career or college major.
- Emphasize the skills and qualities which employers expect of their workers: Professionalism/Work Ethic, Oral and Written Communications, Teamwork/Collaboration and Critical Thinking/Problem Solving (Casner-Lotto & Barrington, 2006).
- Demonstrate the relationship between education and income potential. Middle school teachers, high school teachers, and K-12 counselors need to demonstrate the relationship between education and income
potential. Students need to understand what it would be like for a family of four to live on an income of $25,000 per year, which is the median salary for a high school graduate. Coincidentally, the poverty level for a family of four is just under $25,000. A recent study found that the average college graduate earns over $800,000 more than the average high school graduate by retirement age of 67 (Daly & Bengali, 2014, section 3).

- Demonstrate that there is a relationship between dropping out of school and negative life outcomes. Parents, teachers, and other adults need to emphasize to students that there is a relationship between dropping out of school and the following: income, poor health, psychological problems, emotional problems, substance abuse, behavioral problems, crime, incarceration, teen pregnancy, and welfare dependency.

- Prepare students for lifelong learning. The formation of career interests is a lifelong process that begins as early as middle and high school/K-12. Vocational schools, community colleges, colleges, universities, businesses and industry, policymakers, (etc.) may play a role in the development of a career pathway (Wendler et. al, 2012). Stephens and Scott (2003) argue that effective human development requires an ongoing and long-term commitment by diverse groups. Middle school teachers, high school teachers, and college professors need to emphasize the importance of lifelong learning. Employees, on average, change occupations three times during their working life, and, on average, change jobs 11 times during their working life. Therefore, employees need to be able to adapt to the challenges brought by change and uncertainty. A commitment to ongoing professional development is necessary to maintain one’s competitive advantage in the global economy, and to ensure that one is qualified for career advancement.

Recommendations for K-12

- Emphasize job-related skills. Practical experience and job-related skills need to be a part of the high school and college curriculum. Academic skills are best developed through embedding the requisite skills “…in the presentation of complex workplace problems that students learn to solve…” (Symonds, Schwartz, & Ferguson, 2011, p. 44). Teachers need to help students to understand the underlying theory as to how things work, and why they work. Gordon (2013) recommends the development of career academies, early college high schools, apprenticeship programs and internship programs. Gordon describes the comprehensive career academy model which is being implemented at over 1,200 high schools across the United States.

- Improve math and science learning outcomes. Research demonstrates that students, who successfully complete classes like physics and advanced math classes beyond Algebra II, are more likely to be ready for college level work than students who do not take these classes. Adelman (2003) found that students who complete a mathematics course beyond Algebra II are twice as likely to complete a bachelor’s degree as those who do not take a course beyond Algebra II.

- Focus on career exploration. Parents, schools, colleges, government and businesses need to be more proactive in assisting students and workers to pursue the postsecondary educational credentials which are aligned with the career to which they aspire. Students need to know the qualifications for specific occupations so that they can take the requisite classes which will prepare them for college and/or their preferred career field.

Recommendations for Colleges and Universities

- Evaluate the educational and training needs of the service area. For example, the Commission on Building the University of the 21st Century recommended that the University of North Texas at Dallas “carefully build its portfolio of academic programs based on regional need as defined by job opportunities” and state priorities (Blumenstyk, 2012, p.1).

- Develop long-term plans for addressing the needs of the US workforce. For example, President Obama stated that he wants “…to hear what universities can do to better support and prepare our workers—not just for the jobs of today, but for the jobs five years from now and 10 years from now and 50 years from now” (Fischer, 2009, p. 1).
Recommendations for Filling the Skills Gap

- Develop macro-strategies to address the skills gap. For example, JPMorgan Chase & Co. (2013) launched a five-year, $250 million global workforce readiness and demand-driven training initiative called New Skills at Work. This initiative addresses the “skills gap” by providing workers and potential workers with the specific skills which are directly related to available jobs.

- Develop methods for the validation of one’s career readiness. For example, the Manufacturing Institute created a portable skills certificate. The goal is to have this certificate recognized nationwide. “A worker trained in northern California could land an aerospace manufacturing job in Missouri, an industrial job in Illinois or work in a factory in the Carolinas. The trade association, through its public-service group, the Manufacturing Institute, set a goal of 500,000 such certificates by 2016” (Hall, 2012, p. 1).

Recommendations for Addressing the Educational Achievement Gaps

- Address the educational achievement gap between low income and higher income students. Over the past four decades, the achievement gap by income level has increased (Kids Count, 2012, p. 26).

- Address the educational achievement gap between whites and minorities. Significant racial/ethnic gaps continue to exist in the US with white and Asian/Pacific Islander students having higher graduation rates than students of other races and ethnicities (Kids Count, 2012, p. 26).

- Address the achievement gap in math outcomes for low and high income students. Evaluating the qualifications of math teachers is a place to start. “Among low-income students, 70 percent of their middle school mathematics teachers majored in some other subject in college” (National Math + Science Initiative (n.d.).

Recommendation for Policy-Makers

- Develop economic strategies which recognize how science and math educational outcomes impacts the GDP of the US. A nation’s growth rate in its GDP is highly correlated with international test scores in math and science. If the US were to increase the percentage of students proficient in math to the levels attained in Canada and Korea, this would increase the annual US economic “growth rate by 0.9 percentage points and 1.3 percentage points, respectively.” The economic implications over an 80-year period would be around a trillion dollars a year (Peterson, Hanushek, Woessman & Lastra-Anadón, 2011, p. 19).

Recommended Reading for Policy-makers, Employers, Employees, Educators, Parents, and Students

- The following book is highly recommended for the above listed groups: Future Jobs: Solving the Employment and Skills Crisis (Gordon, 2013). This book examines the skills gap in America, and proposes solutions to the issues confronting employers and employees. The book also includes recommendations for education reforms, business and government policy changes, and regional public-private partnerships.

Conclusion

High schools and colleges need to consider including curricula which are related to job opportunities that exist and are projected to exist in the future. In order to be competitive in the global economy, high school students must graduate from high school with the knowledge and skills needed to succeed in a career and/or college. College and career readiness reforms need to involve a partnership between K–12, higher education, and the business community. There is a need for policies that create incentives for meaningful collaboration between the above entities.

While this paper has focused on the needs of the US workforce, one must not lose sight of the fact that a complete education is one dedicated to the education of the whole person, with studies undertaken across the range of human experience; e.g., communication; critical thinking; analytical and quantitative reasoning; scientific and historical discovery. The US needs a skilled workforce, and it needs educated citizens and employees who have: the ability to communicate clearly through written, oral, visual, and technological venues; the ability to make logical and reasoned judgments; the ability to work in teams of diverse
people; and the capacity to understand values and the expression of these values through ethical behavior and public policy processes.

REFERENCES

cuters-push-skills-certificate.html

http://www.hks.harvard.edu/pepg/PDF/Papers/PEPG12-03_CatchingUp.pdf

Holmes, Jeffrey. Education Futures: University Grads Don’t Make the Grade. USA: Global Strategy Group, 2012.

http://www.usnews.com/education/best-colleges/articles/2012/01/06/community-college-plan-in-chicago-stresses-job-skills

http://investor.shareholder.com/jpmorganchase/releasesdetail.cfm?releaseid=813318

https://www.ets.org/Media/Education_Topics/pdf/AmericasPerfectStorm.pdf

http://nces.ed.gov/NAAL/

https://nms.org/Blog/TabId/58/Postld/8/faq.aspx

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_feb.pdf

http://www.reuters.com/article/2013/04/04/economy-mexico-wages-idUSL2N0CR1TY20130404

http://www.epi.org/publication/bp345-china-growing-trade-deficit-cost/

Sarkin, H. L. “Mexico: A Better Choice than China?”
http://www.businessweek.com/managing/content/mar2009/ca20090313_410106.htm

http://icw.uschamber.com/conference/help-wanted

Galan Janeksela earned his PhD in sociology from Iowa State University. He is currently a Professor in the Department of Social Sciences and Public Administration at West Virginia University Institute of Technology. His research interests include school disciplinary practices, arrests on school grounds, juvenile justice, and corrections. Dr. Janeksela has served as guest editor for two special issues of a journal, and has over 30 published works. He has served as an evaluator or consultant to various criminal justice agencies; and as a college administrator at the chair, dean, vice-president, and president (interim) levels.